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Sistema tekno-sozialak deritzonak osatzen dituzten zerbitzu teknologiko publiko eta globalak eskaintzeko 
gizartean elkarreragin egiten duten geruza ezberdinez osatutako azpiegiturak grafikoki irudikatu daitezke 
sare konplexuen bidez. Sare konplexuak sistema tekniko horien portaera modelatzeko oinarri gisa erabiltzen 
den paradigma matematikoa dira, eta haien portaera aurreikesteko gai dira. Sare konplexua ezaugarri 
topologiko ez hutsalak dituen grafo bat da, adierazle estatistikoen bidez ezaugarritu daitezkeenak, hala nola 
zentraltasun-neurri desberdinak eta komunitatearen detekzioa. Sare konplexuen aplikazioak garatu dira 
hainbat diziplinatan, hala nola Web-en, komunikazio-sareetan, garun-sareetan, sare biologikoetan, sare 
klimatikoetan, kirolean eta sare sozialetan. Artikulu honek intuizioz erakusten du sare konplexuen azpian 
dagoen teoria, baita datuetatik modelatzeko metodo desberdinak ere. Argibide gisa, aplikazioa sarbide 
irekiko software batekin aurkezten da, Euskal Herriko Unibertsitateko ikertzaileen artean aipamen 
bibliografikoen sare konplexu baten indukzio eta karakterizaziorako. 

Giltza-Hitzak: Sistema tekno-sozialak. Sistema konplexuak. Sare konplexuak. Ezaugarri topologikoak eta 
estrukturalak. Sare eredu konplexuak. Dinamika sare konplexuetan. Aipamen bibliografikoen sarea. 

 
 
Las infraestructuras compuestas por diferentes capas que interoperan dentro de la sociedad para 
proporcionar servicios tecnológicos públicos y globales que constituyen los llamados sistemas tecno-sociales 
pueden representarse gráficamente mediante redes complejas. Las redes complejas son el paradigma 
matemático utilizado como base para modelar el comportamiento de estos sistemas tecno-sociales y 
capaces de predecir su comportamiento.  Una red compleja es un grafo con características topológicas no 
triviales que pueden caracterizarse mediante indicadores estadísticos como diferentes medidas de 
centralidad y detección de comunidades. Se han desarrollado aplicaciones de redes complejos en 
disciplinas tan diversas como la Web, las redes de comunicación, las redes cerebrales, las redes biológicas, 
las redes climáticas, el deporte y las redes sociales. Este artículo muestra de forma intuitiva la teoría 
subyacente de las redes complejas, así como diferentes métodos para su modelado a partir de datos. A 
modo ilustrativo se presenta la aplicación con un software de acceso abierto a la inducción y caracterización 
de una red compleja de citas bibliográficas entre investigadores de un departamento de la Universidad del 
País Vasco/Euskal Herriko Unibertsitatea. 
 
Palabras Clave: Sistemas tecno-sociales. Sistemas complejos. Redes complejas. Características topológicas 
y estructurales. Modelos de redes complejos. Dinámica en redes complejas. Red de citas bibliográficas. 
 
 
Les infrastructures constituées de différentes couches qui interagissent au sein de la société pour fournir 
des services technologiques publics et mondiaux qui constituent les systèmes dits techno-sociaux peuvent 
être représentées graphiquement par des réseaux complexes. Les réseaux complexes sont le paradigme 
mathématique utilisé comme base pour modéliser le comportement de ces systèmes techno-sociaux et 
capables de prédire leur comportement. Un réseau complexe est un graphe présentant des caractéristiques 
topologiques non triviales qui peuvent être caractérisées par des indicateurs statistiques tels que différentes 
mesures de centralité et de détection de communauté. Des applications de mise en réseau complexes ont 
été développées dans des disciplines aussi diverses que le Web, les réseaux de communication, les réseaux 
cérébraux, les réseaux biologiques, les réseaux climatiques, le sport et les réseaux sociaux. Cet article 
montre intuitivement la théorie sous-jacente aux réseaux complexes, ainsi que différentes méthodes pour 
les modéliser à partir de données. À titre d'illustration, l'application est présentée avec un logiciel en libre 
accès pour l'induction et la caractérisation d'un réseau complexe de citations bibliographiques entre 
chercheurs d'un département de la Universidad del País Vasco/Euskal Herriko Unibertsitatea. 
 

Mots-Clés : Systèmes techno-sociaux. Systèmes complexes. Réseaux complexes. Caractéristiques 
topologiques et structurelles. Modèles de réseaux complexes. Dynamique dans les réseaux complexes. 
Réseau de citations bibliographiques 
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Introduction 
 
A complex system is made up of several interconnected components whose interaction is capable of 
creating new properties, called emergent, unobservable when the system is seen from a disaggregated 
perspective. The human brain is an example of a complex system. In it, the observation of its basic 
elements, neurons --from any perspective, be it anatomical, electrophysiological or -omics and of their 
connections with other neurons does not allow us to get a precise idea of their global behavior. 
 
A common way to graphically represent a complex system is by means of a graph (network) with non-
trivial topological features, whose nodes denote the elements of the system and the edges indicate 
relationships between pairs of nodes. These types of graphs used to represent complex systems are 
called complex networks 1.  Complex network analysis aims to characterize these networks with a small 
number of meaningful and easily computable measures that have arisen in their applications in 
disciplines as diverse as the Web 2, communication networks 3, brain networks 4, biological networks 5, 
climate networks 6, sport 7, and social networks 8. For reviews on complex networks, refer to 9  and 10. 
 
Techno-social systems 11 are infrastructures made up of different technological layers that interoperate 
within society to provide global public services of a technological nature. Modern techno-social systems 
consist of large-scale physical (or cyber-physical) infrastructures embedded in a dense web of 
communication and computing infrastructures whose dynamics and evolution are defined and driven by 
human behavior. The prediction of the behavior of these systems is based on the mathematical modeling 
of the patterns underlying the data collected in the real world. Complex networks are the mathematical 
paradigm used as the basis for modeling the behavior of these techno-social systems. 
 
This article seeks to introduce, intuitively, theoretical elements that serve to understand the behavior of 
complex networks from their mathematical modeling. The rest of the article is organized as follows. 
Section 1 introduces the main topological and structural characteristics of complex networks: degree 
distribution, centrality measures and community detection algorithms. Complex network models, such as 
Erdös-Renyi random networks, Watts-Strogatz model, and the Barabasi-Albert model are presented in 
Section 2. Section 3 illustrates some of the previous concepts with the application of an open access 
software to the induction and characterization of a complex network of bibliographic citations among 
researchers from a department at the Universidad del País Vasco/Euskal Herriko Unibertsitatea. Section 
4 presents conclusions, and final remarks. 
 

 
1 [1] Newman, M. (2003). The structure and function of complex networks. SIAM Review, 45 (2), 167-256. 
2 [2] Scharnhost, A. (2006). Complex networks and the Web: Insights from nonlinear physics. Journal of Computer-Mediated 

Communication, 8 (4), JCMC845. 
3 [3] Niazi, M.A. (2019). Modeling and Simulation of Complex Communication Networks. IET Digital Library 
4 [4] Rubinov, E., Sporns, O. (2010) Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 

52(3), 1059-1069. 
5 [5] Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., Barabási, A. L. (2000). The large-scale organization of metabolic networks. 

Nature, 407(6804), 651-654. 
6 [6] Donges, J.F., Zou, Y., Marwan, N., Kurths, J. (2009). Complex networks in climate dynamics. The European Physical Journal 

Special Topics, 174, 157-179. 
7 [7] Gong, B., Zhou, C., Gómez, M.A., Buldú, J.M. (2023). Identifiability of Chinese football teams: A complex networks approach. 

Chaos, Solitons and Fractals, 166. 
8 [8] Vega-Redondo., F. (2007). Complex Social Networks. Cambridge University Press. 
9 [9] Walker, G.H., Stanton, N.A., Salmon, P.M., Jenkins, D.P. (2008). A review of sociotechnical systems theory: A classic concept 

for new command and control paradigms. Theoretical Issues in Ergonomic Science, 9(6), 479-499. 
10 [10] Boccalettia, S.,  Latorab, V., Morenod, Y., Chavezf , M., Hwanga, D.U. (2006). Complex networks: Structure and dynamics. 

Physics Reports, 424, 175-308. 
11 [11] Sousa da Mata, A., (2020). Complex networks: A mini-review. Brazilian Journal of Physics, 50, 658-672. 
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1. Topological and structural characteristics of complex networks 
 
1.1. Centrality measures 
 

The first works on graph centrality were developed in the 1940s at the Massachusetts Institute of 
Technology 12 in the sociological field, where centrality characteristics of a group and its efficiency in the 
development of different cooperative tasks were studied. 

The idea of graph centrality is associated with three intuitively evident properties that the central 
elements of a network should verify 13. The first property considers as central elements of a network those 
that have a greater degree of adjacency, that is, those that are related to a greater number of nodes. The 
node degree measures the number of its neighbors in the graph. It quantifies the node connectivity and 
is a local measure of centrality. Figure 1 shows an example in which node 5, which intuitively is more 
central than node 3, nevertheless has a lower node degree. 
 

Figure 1. Illustration of the node degree vector computation by means of the adjacency matrix 
 
 

 

 
A global measure of centrality of a node is the so-called eigenvector centrality. The eigenvector centrality 
14 considers that the centrality of a node is proportional to the centrality of the nodes that are directly 
connected to it. The vector whose coordinates are the values of the eigenvector centralities of each one 
of the nodes turns out to be the eigenvector of the adjacency matrix of the graph corresponding to the 
eigenvalue of greatest absolute value. The way of calculating the eigenvector centrality presents 
similarities with the PageRank coefficient 15, famous for being the Google search engine and providing a 
ranking of importance to the web pages resulting from a given query. The PageRank coefficient of a given 
node is computed recursively from the PageRank coefficients of its neighboring nodes, normalized by 
their corresponding node degree. A damping coefficient influences the convergence of the Markov chain 
that models the stochastic process underlying such calculations. 

 
12 [12] Bavelas, A., Barret, D. (1945). An Experimental Approach to Organizational Communication. Department of Economics 

and Social Sciences. Massachusetts Institute of Technology. 
13 [13] Freeman, L.C. (1979). Centrality in social networks: Conceptual clarification. Social Networks, 1, 215-239. 
14 [14] Langville, A., Meyer, C. (2006).  Google's PageRank and Beyond: The Science of Search Engine Rankings. Princeton 

University Press. 
15 [15] Page, L., Brin, S., Motwani, R., Winograd, T. (1998) The PageRank Citation Ranking: Bringing Order to the Web. Technical 

Report SIDL-WP-1999-0120, Stanford Digital Library Technologies Project. 
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The second property establishes that the central elements of a network are those that belong to the 
largest possible number of shortest paths between any two nodes of the network. The intuition is that 
these nodes are good intermediaries because in order to take the shortest path from one node to another 
in the network, one would necessarily go through one of these nodes. Betweenness centrality 16 is a 
measure of centrality in a graph based on shortest paths. For every pair of vertices in a connected graph, 
there exists at least one shortest path between the vertices such that either the number of edges that 
the path passes through (for unweighted graphs) or the sum of the weights of the edges (for weighted 
graphs) is minimized. The betweenness centrality for each node is the quotient between the number of 
geodesics (shortest paths) between any two nodes that pass through the given node and the number of 
geodesics that join any two nodes, this number playing the role of normalizing constant. Betweenness 
centrality represents the degree to which nodes stand between each other. For example, in a 
telecommunications network, a node with higher betweenness centrality would have more control over 
the network, because more information will pass through that node. Figure 2 shows examples of 
betweenness centrality scores. 

 

Figure 2. A. Betweenness centrality scores (without the normalizing constant) for a small graph.  B. An 
undirected graph colored based on the betweenness centrality of each vertex from least (red) to 

greatest (blue). 
 

 

 
The third property is based on the fact that the central elements of a network are those that are closest 
to the rest of the nodes, that is, those that minimize the sum of geodesic distances to the rest of the 
nodes. The closeness centrality 17 of a node 𝑖𝑖, denoted as 𝐶𝐶𝐶𝐶(𝑖𝑖), measures how short the shortest paths 
are from node 𝑖𝑖 to all the nodes and is defined as the normalized inverse of the sum of the geodesic 
distances in the graph: 𝐶𝐶𝐶𝐶(𝑖𝑖) = 𝑛𝑛−1

∑ 𝑑𝑑(𝑖𝑖,𝑗𝑗)𝑗𝑗
, where 𝑖𝑖 ≠ 𝑗𝑗, 𝑛𝑛 is the number of nodes, and 𝑑𝑑(𝑖𝑖, 𝑗𝑗) is the geodesic 

distance between 𝑖𝑖 and 𝑗𝑗. Closeness centrality is a way of detecting nodes that are able to spread 
information very efficiently through a graph. See Figure 3 for an example. 

 

 

 
16 [16] Brandes, U. (2001). A faster algorithm for betweenness centrality. The Journal of Mathematical Sociology, 25(2), 163-

177. 
17 [17] Beauchamp, M. A. (1965). An improved index of centrality. Systems Research and Behavioral Science, 10 (2), 161-

163. 
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Figure 3. Calculating the closeness centrality of nodes in a graph 
 

 

 
1.2. Community detection 
 

Centrality measures are used for analyzing graphs whose nodes are elements of uniform collectives. 
However, sometimes the population under study contains inhomogeneous nodes. In this case, it is 
convenient to start the analysis with a detection of nodes with similar characteristics, to later carry out a 
more detailed analysis of each one of the groups. 

The concept of community is based on those of intraclass density and extraclass density associated with 
a subset C of graphs nodes of the network. To calculate the intraclass density we need to calculate for 
each node of C the number of connections adjacent to said node that are in C. Adding over all nodes of 
C and normalizing by the total number of possible connections within C gives the intraclass density of C. 
The extraclass density will be obtained from the normalization of the total number of connections of each 
node of C with nodes outside of C. From these two concepts, it ensures that finding communities in graphs 
is reduced to finding subsets of graph nodes in which the difference between the intraclass density and 
the extraclass density is large enough. 

Graph partition 18 is the reduction of a graph to a smaller graph by partitioning its set of nodes into 
mutually exclusive groups (the communities). Edges of the original graph that cross between the groups 
will produce edges in the partitioned graph. If the number of resulting edges is small compared to the 
original graph, then the partitioned graph may be better suited for analysis and problem-solving than the 
original. Graph partition problems fall under the category of NP-hard problems. For this reason, different 
combinatorial optimization heuristics have been applied (taboo search, ant colony optimization, genetic 
algorithms...) to obtain solutions to different instantiations of the graph partitioning problem. 

The Kernighan–Lin algorithm 19 is a simple heuristic for finding graph partitions. The input to the 
algorithm is an undirected graph. The goal is to partition the node set into two disjoint subsets A and B of 
equal (or nearly equal) size, in a way that minimizes the sum of the weights of the subset of edges that 
cross from A to B. Instead, if the graph is unweighted, the goal is to minimize the number of crossing 
edges; this is equivalent to assigning weight one to each edge. The algorithm maintains and improves a 
partition, in each iteration using a greedy algorithm to pair up vertices of A with vertices of B, so that 
moving the paired vertices from one side of the partition to the other will improve the partition. After 

 
18 [18] Wu, S., Hou, J. (2023). Graph partitioning: An updated survey. AKCE International Journal of Graphs and 

Combinatorics, 20(1), 9-19. 
19 [19] Kernighan, B. W., Lin, S. (1970). An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal, 

49, 291–307. 
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matching the vertices, it then performs a subset of the pairs chosen to have the best overall effect on the 
solution quality.  

Community detection clustering algorithms are based on defining a distance, or alternatively a 
dissimilarity measure, between pairs of graph nodes to subsequently apply standard clustering methods, 
such as an agglomerative (or divisive) hierarchical clustering 20  or a partitional clustering 21. Figure 4 
shows the application of a hierarchical agglomerative algorithm for the detection of communities 22 in a 
graph with 14 nodes. The agglomerative hierarchical clustering algorithm starts with as many clusters as 
nodes, each singleton cluster with only one node. At each stage of the algorithm, the most similar pair of 
clusters is merged until all the objects belong to one cluster. There are different linkage strategies (single 
linkage, nearest neighbor linkage, average linkage, centroid linkage, or Ward’s method) for clusters 
merging depending on the definition of the dissimilarity between two clusters of nodes. A binary tree, 
called dendrogram, represents this process. The root node of the dendrogram contains all the graph 
nodes. The intermediate nodes describe how proximal the nodes are to each other. The height of the 
dendrogram represents the dissimilarity between each pair of nodes, or clusters of nodes, or between a 
node and a cluster of nodes. The clustering results can be output by cutting the dendrogram at different 
heights. The example of Figure 4 shows a solution for the community detection problem with five clusters 
or communities of nodes.  

 

Figure 4. Example of a community detection result based on a hierarchical agglomerative algorithm 
where the dendrogram where the threshold applied to the dendrogram has originated 5 clusters 

 

 
 
 
Partition clustering community detection algorithms 23 are based on the adaptation of partitional 
clustering methods to the problem of community detection in graphs. Although the best known partitional 
algorithm is K-means, other algorithms such as K-medians, K-modes, K-medoids, spectral clustering or 
affinity propagation can be used for this task. 
 
 
 
 

 
20 [20] Florek, K., Lukaszewicz, J., Perkal, H., Steinhaus, H., Zubrzycki S. (1951). Sur la liason et la division des points d’un 

ensemble fini. Colloquium Mathematicum, 2, 282-285. 
21 [21] MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the 5th 

Berkeley Symposium on Mathematical Statistics and Probability, 281-297. 
22 [22] Zhang, S., Ning, X.M., Zhang, X.S. (2007). Graph kernels, hierarchical clustering, and network community structure: 

experiments and comparative analysis. The European Physical Journal B 57(1), 67-74. 
23 [23] Alguliev, R.M., Aliguliyev, R.M., Ganjaliyev, F.S. (2013). Partition clustering-based method for detecting community 

structures in weighted social networks. International Journal of Information Processing and Management, 4, 60-72. 
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2. Complex network models  
 

There are several models of complex networks that can be used both for the random generation of said 
networks and to carry out hypothesis tests in which said models are set as null hypotheses to be tested 
from real world data. Three such complex network models will be introduced in this section. 

 

2.1. Erdős-Rényi  and Erdős-Rényi-Gilbert models 
 
The Erdős-Rényi model 24 refers to one of two closely related models for generating random graphs or the 
evolution of a random network. These models are named after the Hungarian mathematicians Paul Erdős 
and Alfréd Rényi, who introduced one of the models in 1959. Edgar Gilbert introduced the other model, 
operating simultaneously and independently from Erdős and Rényi. In the model of Erdős and Rényi, all 
graphs on a fixed vertex set with a fixed number of edges are equally likely. In the model introduced by 
Gilbert, also called the Erdős–Rényi–Gilbert model 25, each edge has a fixed probability of being present 
or absent, independently of the other edges.  
 
In the Erdős-Rényi model, denoted as 𝐺𝐺(𝑛𝑛,𝑚𝑚), a graph is chosen uniformly at random from the collection 
of all graphs which have n nodes and m edges. The nodes are considered to be labeled, meaning that 
graphs obtained from each other by permuting the vertices are considered to be distinct. For example, in 
the 𝐺𝐺(3,2) model, there are three two-edge graphs on three labeled vertices (one for each choice of the 
middle vertex in a two-edge path), and each of these three graphs is included with probability 1

3
. Figure 5 

shows an example of a simulation of an Erdős-Rényi-Gilbert network. 
 

Figure 5. An example of an Erdős-Rényi-Gilbert network with 8 nodes (top).  
Topologies and node degree frequencies for different values of p (bottom) 

 
 

 
 

 
24 [24] Erdős, P., Rényi, A. (1959). On random graphs. I. Publicationes Mathematicae 6, 290–297. 
25 [25] Gilbert, E.N. (1959). Random graphs. Annals of Mathematical Statistics, 30(4), 1141–1144. 
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The small-world experiment comprised several experiments conducted by Milgram,  examining the 
average path length for social networks of people in the United States. The research was groundbreaking 
in that it suggested that human society is a small-world-type network characterized by short path-lengths. 
The experiments are often associated with the phrase "six degrees of separation", although Milgram did 
not use this term himself.  

In this sense, an Erdős-Rényi network can be interpreted as a small-word network as we can see with the 
following example. Let consider one Erdős-Rényi network with a mean node degree given by 𝑘𝑘. If each 
node of said network communicates with each of its 𝑘𝑘 neighbors, and this process is repeated r steps, 
we find that a total of 𝑘𝑘𝑟𝑟nodes have been connected. If 𝑘𝑘 = 𝑟𝑟 = 10 we would have more nodes connected 
to each other than the total world population. 

The Erdős–Rényi–Gilbert model is denoted as 𝐺𝐺(𝑛𝑛,𝑝𝑝). In it, a graph is constructed by connecting labeled 
nodes randomly. Each edge is included in the graph with probability p, independently from every other 
edge. Equivalently, the probability for generating each graph that has n nodes and m edges is 

𝑝𝑝𝑚𝑚 (1− 𝑝𝑝)�
𝑛𝑛
2�−𝑚𝑚. The parameter p in this model can be thought of as a weighting function. As p increases 

from 0 to 1, the model becomes more and more likely to include graphs with more edges and less and 
less likely to include graphs with fewer edges. A graph in 𝐺𝐺(𝑛𝑛,𝑝𝑝) has on average �𝑛𝑛2�𝑝𝑝 edges. The 

distribution of the degree of any particular 𝑣𝑣 vertex is binomial: 𝑃𝑃(deg(𝑣𝑣) = 𝑘𝑘) =  �𝑛𝑛 − 1
𝑘𝑘 � 𝑝𝑝𝑘𝑘(1 −

𝑝𝑝)𝑛𝑛−1−𝑘𝑘.  This probability distribution of the node degree converges when n and k → ∞ to a Poisson 

distribution of mean 𝜆𝜆 =  2𝑘𝑘
𝑛𝑛

, obtaining that 𝑃𝑃(deg(𝑣𝑣) = 𝑘𝑘) =  𝜆𝜆
𝑘𝑘

𝑘𝑘!
𝑒𝑒−𝜆𝜆. This convergence property of the 

node degree towards a Poisson distribution together with the lack of local clusters of nodes are two 
shortcomings of the Erdős–Rényi–Gilbert networks that invalidate them as models of a good number of 
situations in the real world. 

In percolation theory one examines a finite (or infinite) graph and removes edges randomly. Thus the 
Erdős–Rényi process can be seen as an unweighted link percolation on the complete graph, as the 
probability of removing each edge is the same. Alternative modeling, such as the Watts-Strogatz model 
and the Barabási-Albert model, are not percolation processes. Instead, they are rewiring and growth 
processes respectively (see below). 
 
 
 
 
 
 
 



Larrañaga, Pedro; P. Soloviev, Vicente: Elements of complex networks 

Rev. int. estud. vascos. 68, 2, 2023 
10 

2.2. Watts-Strogatz model 
 
The Watts–Strogatz model 26 is a random graph generation model that produces graphs with small-world 
properties, including short average path lengths and high clustering. Average path length, or average 
shortest path length is a concept in network topology that is defined as the average number of steps 
along the shortest paths for all possible pairs of network nodes. In graph theory, a clustering coefficient 
is a measure of the degree to which graph nodes tend to cluster together. Evidence suggests that in most 
real-world networks, and in particular social networks, nodes tend to create tightly knit groups 
characterized by a relatively high density of ties27. 
 
The Watts-Strogatz network generation process consists of two phases. In the first phase, we start with n 
ordered nodes and connect each one of them with an even k number of nodes, the 𝑘𝑘

2
 immediate 

predecessors and the 𝑘𝑘
2
 following consecutive nodes. In a second phase, all the graph arcs are traversed, 

each one of them being eliminated with 𝛽𝛽 probability. Then, one of its ends is reconnected with one of 
the other nodes, avoiding self-links or already existing arcs. If one of these two circumstances occurred, 
the arc in question would disappear. 

The topological properties of the resulting graph depend on 𝛽𝛽 probability. In the case of 𝛽𝛽 =  0, where the 
generated network is a regular network, the degree distribution is a Dirac Delta centered at 2𝑘𝑘. If 𝛽𝛽 =1, 
the graph is random and the nodal degree follows a Poisson distribution. Figure 6 shows the topology of 
a Watts-Strogatz network with 24 nodes with three different 𝛽𝛽 values. 

 

Figure 6. The Watts-Strogatz model. Different topologies depending on 𝜷𝜷 values. 
 

 

 
The major limitation of the model is that it produces an unrealistic degree distribution. In contrast, real 
networks are often scale-free networks (the degree distribution follows a power law) inhomogeneous in 
degree, having hubs and a scale-free degree distribution. Such networks are better described in that 
respect by the preferential attachment family of models, such as the Barabási–Albert model. 
 
 
 

 
26 [27] Watts, D. J., Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks. Nature, 393, 440-442. 
27 [28] Holland, P. W., Leinhardt, S. (1971). Transitivity in structural models of small groups. Comparative Group Studies, 2(2), 

107–124. 
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2.3. Barabási-Albert model 
 
The Barabási–Albert model 28 is an algorithm for generating random scale-free networks using a 
preferential attachment mechanism. Many observed networks (at least approximately) fall into the class 
of scale-free networks. This means that they have scale-free degree distributions (that is, the probability 
of a node in the network having 𝑘𝑘 connections to other nodes follows a power law: 𝑃𝑃(𝑘𝑘) ~ 𝑘𝑘−𝛾𝛾, where 𝛾𝛾 
is a parameter whose value is typically in the range 2 < 𝛾𝛾 < 3), while random graph models such as the 
Erdős–Rényi  model and the Watts–Strogatz  model do not exhibit power laws.  
 
The Barabási–Albert model incorporates two important general concepts: growth and preferential 
attachment. Both growth and preferential attachment exist widely in real networks. Growth means that 
the number of nodes in the network increases over time. Preferential attachment means that the more 
connected a node is, the more likely it is to receive new links. Nodes with a higher degree have a stronger 
ability to grab links added to the network.  
 
Intuitively, the preferential attachment can be understood if we think in terms of social networks 
connecting people. Here a link from A to B means that person A "knows" or "is acquainted with" person 
B. Heavily linked nodes represent well-known people with lots of relations. When a newcomer enters the 
community, they are more likely to become acquainted with one of those more visible people rather than 
with a relative unknown. Preferential attachment is also sometimes called the Matthew effect, "the rich 
get richer". Several natural and human-made systems, including the Internet, the World Wide Web, 
citation networks, and some social networks are thought to be approximately scale-free and certainly 
contain few nodes (called hubs) with unusually high degree as compared to the other nodes of the 
network. 
 
The only parameter in the Barabási–Albert model is m, a positive integer. The Barabási-Albert algorithm 
works as follows. The network starts with a set of  𝑚𝑚0 ≥  𝑚𝑚 randomly connected nodes. Note that 𝑚𝑚𝑜𝑜 ≥
2 and the degree of each node in the initial network must be at least 1, otherwise the evolution of the 
network, as nodes are added, would cause them to remain completely disconnected from the network. 
New nodes are added to the network one by one. Each node is connected to m network nodes with a 
probability that is proportional to the number of links that the network nodes have, that is, the new nodes 
are linked preferably with the most connected nodes. Formally, the probability 𝑝𝑝𝑖𝑖 that a node connects to 
node 𝑖𝑖 is 𝑝𝑝𝑖𝑖 =  𝑘𝑘𝑖𝑖

∑𝑘𝑘𝑗𝑗
 , where 𝑘𝑘𝑖𝑖 is the degree of node 𝑖𝑖. Nodes with a large number of connections (hubs) 

tend to quickly accumulate more links, while those with few links are rarely the source of new links. New 
nodes according to this algorithm are said to have a preference to be linked with the most requested 
nodes. This algorithm is based on the concept of preferential connection of the new nodes that join the 
network. 

The degree distribution resulting from the Barabási–Albert model is scale free, in particular, it is a power 
law of the form 𝑃𝑃(𝑘𝑘) ~ 𝑘𝑘−3 , as can be seen in Figure 7. An analytical result for its clustering coefficient 
was obtained in 29. 
 
 

 
 

 
28 [29] Barabási, A.L., Albert, R. (1999). Emergence of scaling in random networks. Science 286, 509-512. 
29 [30] Klemm, K., Eguíluz, V. C. (2002). Growing scale-free networks with small-world behavior. Physical Review E, 65 (5): 

057102. 
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Figure 7. The power law distribution, 𝑷𝑷(𝒌𝒌) ~ 𝒌𝒌−𝟑𝟑, of the Barabási–Albert model with m=3 and n= 2000 
 

 
 
 
 
 

3. Illustration example: A complex network of bibliographic citations  
 
As an illustrative example, the graph of academic citations from a department at the Universidad del País 
Vasco/Euskal Herriko Unibertsitatea has been created. This graph is the result of data provided by Google 
Scholar and is shown in Figure 8. Each node of said graph corresponds to a member of the analyzed 
department, while an edge between two members indicates the existence of a scientific work of which 
both researchers are co-authors. No weights have been assigned to the edges, even if it could have been 
done taking into account the number of works jointly published by both researchers. No restrictions have 
been imposed on the period of time analyzed. Therefore, there may be edges between researchers who 
jointly published many years ago, but who currently do not collaborate scientifically. These last two issues 
undoubtedly limit the results of the analysis. On the other hand, the analysis has been carried out using 
exclusively the concepts introduced in Section 1. 
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Figure 8. Graph representing academic bibliographic co-citations among the 28 members from a 
department at the Universidad del País Vasco/Euskal Herriko Unibertsitatea. 

 
 
Table 1 shows the values of three centrality measures calculated for a department member from the 
graph in Figure 8. Table 1 illustrates that the node degree varies from 0 to 9. The 0-s correspond to the 
four nodes without edges, while the highest value (node degree = 9) is achieved by two members 
recognized for being directors of research groups. In the third column of Table 1 we can read the 
betweenness centrality values of each node without normalizing. In general, these values show a high 
correlation with their corresponding node degree values. There are striking cases, such as those of nodes 
1 and 10, with similar values in terms of betweenness centrality but very different values in node degree. 
Nodes 22 and 23 also stand out with the same value of node degree and very different values in 
betweenness centrality. The fourth column of Table 1 contains the closeness centrality values for each 
node. These values show a stronger correlation with node degree than with betweenness centrality. It is 
worth noting the high value of closeness centrality in node 13 when compared to its node degree. 

 

Table 1. Centrality measures for the graph nodes in Figure 8 
 

Node Node 
degree 

Betweenness 
centrality 

Closeness 
centrality  

1 3 35 0.34 
2 4 26 0.39 
3 0 0 0.00 
4 5 9 0.38 
5 4 1 0.34 
6 6 18 0.43 
7 5 3 0.39 
8 6 7 0.38 
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Node Node 
degree 

Betweenness 
centrality 

Closeness 
centrality  

9 2 6 0.30 
10 9 32 0.45 
11 1 0 0.29 
12 4 6 0.36 
13 5 40 0.45 
14 5 7 0.37 
15 9 47 0.47 
16 4 1 0.34 
17 4 22 0.37 
18 5 18 0.37 
19 1 0 0.24 
20 2 0 0.28 
21 0 0 0.00 
22 7 12 0.43 
23 7 65 0.47 
24 1 0 0.26 
25 0 0 0.00 
26 2 2 0.26 
27 0 0 0.00 
28 5 16 0.37 

 
Figure 9 shows the dendrogram that represents the hierarchical agglomerative clustering of the 28 nodes 
in Figure 8. The red dashed line has been used as a threshold to obtain the 8 clusters (see Figure 10), 
each with a different color. Four of the clusters have a single member. It has been confirmed that the 
other four clusters correspond to the four existing research groups within the department, indicating the 
validity of this method for detecting communities in complex networks. 

 
Figure 9. Hierarchical agglomerative clustering of the 28 nodes in Figure 8 
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Figure 10. Eight clusters resulting from the detection of existing communities in the graph illustrated in 

Figure 8 and the hierarchical agglomerative clustering method in Figure 9 
 

 
 

 
 
 
 
4. Conclusions and final remarks 
 
In this article some elements of complex networks have been presented, which constitute a useful 
paradigm to quantitatively analyze techno-social systems. Basic topological and structural features have 
been introduced in complex networks such as graph centrality, node degree, eigenvector centrality, or the 
Page-Rank coefficient. The concepts of betweenness, centrality and closeness centrality have been 
illustrated with explanatory examples. Some community detection algorithms have been explained, such 
as the Kernighan-Lin algorithm and various community detection clustering algorithms, both based on 
hierarchical agglomerative algorithms and partitional clustering methods. Complex network models 
commonly used in the literature have been included: the Erdős-Rényi model, as a generator of small-word 
networks and an example of a percolation process; the Watts-Strogatz model, as a graph generator with 
small-word properties, short average path lengths and high clustering; finally, the Barabási-Albert model 
from which random scale-free networks can be obtained using a preferential mechanism. An example of 
application in the field of academic co-citations in a department of the Universidad del País Vasco/Euskal 
Herriko Unibertsitatea has been analyzed, using the elements previously introduced. 
 
It is out of the scope of this work to provide a list of additional methods and algorithms with the same 
objective as those already introduced. We believe that the reader can benefit to a greater extent from 
some reflections in relation to more relevant and current research aspects on this topic. 
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A fundamental concern refers to the statistical modeling from data, trying to find the most likelihood 
complex network structure. In this sense, a current trend is the adaptation of the modeling methods of 
probabilistic graphical models (Markov networks and Bayesian networks) that have reached a high level 
of development within statistical machine learning. Another aspect of interest in the use of probabilistic 
graphical models is that they can be applied to carry out future predictions using temporal versions 
(temporal Bayesian networks, dynamic Bayesian networks or continuous time Bayesian networks). The 
existence of exact evidence propagation procedures that allow for different kinds of probabilistic 
reasoning (predictive, diagnostic, intercausal, abductive, counterfactual, ...) is another argument in favor 
of probabilistic graphical models. 
 
A further novel topic concerns spatial networks. While most of the early works on complex networks have 
focused on the characterization of their topological properties, the spatial aspect has received less 
attention, when not neglected at all. However, it is not surprising that the topology could be constrained 
by the geographical embedding. 
 
Many real networks are interrelated with each other and cannot be analyzed in isolation. In this sense, in 
recent years the study of networks of real networks has begun, what is known as multiplex networks. An 
example very easy to understand is the transportation network that includes, for instance, the airport 
network, the highway network and the metro network. In the case of the airport network, it is usually 
modeled as a single network where the nodes are the airports and the edges are the direct flights between 
airports. However, a better representation would be to consider a multiplex network made up of many 
networks, each of which would correspond to a particular airline, where each node would again be the 
airport and each edge would correspond to the direct flights between airports carried out by that company. 
It may happen that each of these networks has the same set of nodes but different edges, since not all 
airlines have flights between the same airports. The study of this multiplex network has much importance, 
for example, to re-accommodate passengers who have missed their flights on a flight from another 
company due to the high economic costs involved. In general, complex infrastructures are totally 
interdependent so that a small failure in a network can cause a cascade of failures in all interdependent 
networks.  
 
The development of complex networks that include methodologies from probabilistic graphical models, 
spatial statistics and multiplex networks will enable the modelling of more complex situations already 
present in the real world. It will also provide tools to carry out probabilistic reasoning, significantly 
improving the applied research obtained from complex networks. However, for this to occur, a good 
number of limitations derived from the current scarce methodological development of probabilistic 
graphical models at the level of spatiality and in scenarios as interrelated as multiplex networks should 
be overcome. 
 
 
 


